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Abstract

Multi-agent systems in the real world, such as autonomous vehicles and robot swarms, often rely on
robust reinforcement learning algorithms to achieve effective coordination. However, existing multi-
agent reinforcement learning frameworks struggle to scale to new tasks and new agents without
access to shaped rewards, centralized training, or full observability. By contrast, animals learn to
collectively collaborate on tasks without any centralized training by aligning their behaviors within a
local context. This is known as the self-organization principle in Zoology. Inspired by this principle,
I introduce a simple and task-agnostic alignment-driven intrinsic reward in my thesis. This intrinsic
reward encourages aligning dynamics: individual agents learn behaviors that match their neighbors’
expectations. Compared to alternative intrinsic rewards based on curiosity, alignment as an intrinsic
reward improves decentralized coordination across cooperative and competitive tasks. Alignment
also enables agents to successfully coordinate under partially observable settings and scales well as
the number of agents grows. In investigating how alignment benefits multi-agent training, I find that
alignment helps break coordination symmetries. These results suggest that agents learn to divide
tasks amongst themselves better as a result of alignment, which may be a more useful strategy than
curiosity-driven exploration for multi-agent coordination.
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Chapter 1

Introduction

Many real world AI applications can be formulated as multi-agent systems, including autonomous

vehicles (Cao, Yu, Ren, & Chen, 2012), resource management (Ying & Dayong, 2005), traffic con-

trol (Sunehag et al., 2017), robot swarms (Swamy, Reddy, Levine, & Dragan, 2020) and multi-player

video games (Silver et al., 2016). Such applications require agents to adapt their behaviors with

respect to one another in order to successfully coordinate with each other. Unfortunately, adaptive

coordination algorithms are challenging to develop because they must account for other agents’ be-

haviors which may change over the course of training. This non-stationarity makes learning difficult

and unstable, particularly when agents cannot fully observe each other (J. N. Foerster et al., 2017).

Prior work has explored the use of centralized training (J. Foerster, Farquhar, Afouras, Nardelli,

& Whiteson, 2018; Rashid et al., 2018; Sunehag et al., 2017; Lowe et al., 2017) and intrinsic

rewards (Iqbal & Sha, 2020) to overcome these challenges. Centralized training assumes access to

all agents’ observations and actions to improve joint state-action estimates. However, it neither

scales with the number of agents (Iqbal & Sha, 2019a; Liu, Yeh, & Schwing, 2020) nor handles

scenarios in which agents can not communicate easily, such as in human-robot collaborations. Other

1



(a) Aligned → high  (b) Misaligned → low

Predicted next observation:

Agent j’s dynamics prediction of i

Goal

Agent i

Agent j

Receptive field

Observation at t+1: Observation at t:    

Figure 1.1: We introduce alignment, a task-agnostic intrinsic reward to improve multi-agent systems.
Intuitively, alignment encourages agents to become more predictable to their neighbors. An agent
(e.g. agent i here) learns to behave in ways that match its neighbors’ (e.g agent j’s) predictions of
its next observation. Here, agent j expects agent i to move up instead of down, moving closer to a
point of interest above it. Agent i attains (a) a higher reward when its action (e.g. upward) aligns
with this prediction or (b) a lower reward when its action (e.g. downward) is misaligned.

works rely on task-specific rewards (Jain et al., 2020; Lowe et al., 2017); although these rewards

alleviate the dependency on having complete knowledge of other agents, they are meticulous and

expensive to generate because they require domain knowledge. Single-agent reinforcement learning

avoids hand-designing rewards by introducing intrinsic rewards that incentivize an agent to explore

novel states (Pathak, Agrawal, Efros, & Darrell, 2017; Stadie, Levine, & Abbeel, 2015).

In this work, we propose alignment as a multi-agent intrinsic reward to overcome these challenges.

Intuitively, alignment encourages agents to elicit behaviors that decrease future uncertainty for their

team: it encourages each agent to choose actions that match its teammates’ expectations. Consider

a collaborative navigation task where N agents aim to simultaneously occupy N goal locations.

Alignment encourages each agent to move to goals others expect it to occupy, like goals that are

either closest to the agent or goals that other agents aren’t moving towards (Figure 1.1).

Our formulation of alignment is inspired by the self-organization principle in Zoology (I. Couzin,

2007). This principle hypothesizes that collective animal intelligence emerges because groups syn-

chronize their behaviors using only their local environment (Figure 1.2 and 1.3); they do not rely on

2



Figure 1.2: Representation of an individual animal in the self-organizing model centred at the origin:
zor - zone of repulsion, zoo - zone of orientation (or alignment), zoa - zone of attraction (I. D. Couzin
et al., 2002).

Figure 1.3: Different collective behaviours exhibited by the self-organizing model: (A) swarm, (B)
torus, (C) dynamic parallel group, (D) highly parallel group (I. D. Couzin et al., 2002).
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complete information about other agents and can coordinate successfully by predicting the dynam-

ics of agents within their field-of-view (Collett, Despland, Simpson, & Krakauer, 1998; Theraulaz &

Bonabeau, 1995; Ben-Jacob et al., 1994; Buhl et al., 2006). Similarly, alignment as an intrinsic re-

ward is calculated based on the agent’s local observations; it does not require a centralized controller

nor full observability; it uses neighboring agents’ expectations to choose actions that reinforce those

expectations. Alignment is task-agnostic and can be applied to both collaborative and competitive

multi-agent tasks.

We demonstrate the utility of alignment as an intrinsic reward by showing that it improves

multi-agent performance across collaborative and competitive tasks on the multi-agent particle en-

vironment, a popular environment for multi-agent reinforcement learning (Lowe et al., 2017). Empir-

ically, we show that alignment improves the performance of decentralized algorithms across different

multi-agent tasks, and overcomes the learning challenges in partially observable environments with

sparse task rewards. It outperforms curiosity-based multi-agent intrinsic reward baselines (Ndousse,

Eck, Levine, & Jaques, 2021; Stadie et al., 2015; Iqbal & Sha, 2020) and scales to more agents.

Investigating why alignment improves performance, we find that aligning behaviors lead to better

sub-task division amongst collaborators (Hu, Lerer, Peysakhovich, & Foerster, 2020). It also enables

zero-shot coordination with new agents that weren’t trained together, implying that alignment can

support not just decentralized but disjoint multi-agent training. Finally, we find that performance

improvements are correlated with the accuracy of the learned dynamics model. Taken together, our

experimental results provide nuanced empirical evidence that alignment improves multi-agent col-

laboration, especially in ecologically valid conditions where the self-organization principle has been

observed: in cooperative tasks with decentralized training in partially observable environments.

4



Chapter 2

Related work

Our formulation of alignment, a task-agnostic intrinsic reward for multi-agent training, draws inspi-

ration from the self-organization principle in Zoology, which posits that synchronized group behavior

is mediated by local behavioral rules (I. Couzin, 2007) and not by a centralized controller (Camazine

et al., 2020). Group cohesion emerges by predicting and adjusting one’s behavior to that of near

neighbors (Buhl et al., 2006). This principle underlies the coordination found in multi-cellular organ-

isms (Camazine et al., 2020), the migration of wingless locusts (Collett et al., 1998), the collective

swarms of bacteria (Ben-Jacob et al., 1994), the construction of bridge structures by ants (Theraulaz

& Bonabeau, 1995), and some human navigation behaviors (I. Couzin, 2007).

2.1 Intrinsic motivation for single agents

Although we draw inspiration from Zoology for formalizing alignment as an intrinsic reward, there

is a rich body of work on intrinsic rewards within the single-agent reinforcement learning com-

munity. Sparse rewards make it difficult for agents to explore and discover optimal policies. To

incentivize continued exploration, even when non-optimal successful trajectories are uncovered first,
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scholars have argued for the use of intrinsic motivation (Schmidhuber, 1991). Single-agent intrinsic

motivation has focused on exploring previously unencountered states (Pathak et al., 2017; Burda,

Edwards, Pathak, et al., 2018), which works particularly well in discrete domains. In continuous

domains, identifying unseen states requires keeping track of an intractable number of visited states;

instead, literature has recommended learning a forward dynamics model to predict future states and

identify novel states using the uncertainty of this model (Achiam & Sastry, 2017). Other formula-

tions encourage re-visiting states where the dynamics model’s prediction of future states errs (Stadie

et al., 2015; Pathak et al., 2017). Follow up papers have improved how uncertainty (Kim, Sano,

De Freitas, Haber, & Yamins, 2020) and model errors (Burda, Edwards, Storkey, & Klimov, 2018;

Sekar et al., 2020) are calculated.

2.2 Intrinsic motivation for multiple agents

Most intrinsic rewards used for multi-agent systems have been adapted from single-agent exploration

incentives (Iqbal & Sha, 2019b; Böhmer, Rashid, & Whiteson, 2019; Schafer, 2019) and have pri-

marily focused on cooperative tasks. Recent works propose task-specific intrinsic rewards to improve

either coordination, collaboration, or deception: These rewards either maximize information con-

veyed by an agent’s actions (Iqbal & Sha, 2019b; Chitnis, Tulsiani, Gupta, & Gupta, 2020; T. Wang,

Wang, Wu, & Zhang, 2019), shape the influence of an agent (Jaques et al., 2019; J. N. Foerster et

al., 2017), incentivize agents to hide intentions (Strouse, Kleiman-Weiner, Tenenbaum, Botvinick, &

Schwab, 2018), build accurate models of other agents’ policies (Hernandez-Leal, Kartal, & Taylor,

2019; Jaques et al., 2019), or break extrinsic rewards to do better credit assignment (Du et al.,

2019).

Several multi-agent intrinsic rewards (Hernandez-Leal et al., 2019; Jaques et al., 2019), including

ours, rely on the ability to model others’ dynamics in a shared environment. This ability is a key

6



component to coordination, closely related to Theory of Mind (Tomasello, Carpenter, Call, Behne,

& Moll, 2005). Our work can be interpreted as using a Theory of Mind model of others’ behaviors

to calculate an intrinsic motivation loss. Our proposal is related to model-based reinforcement

learning (Jaderberg et al., 2016; R. E. Wang, Kew, et al., 2020); however, instead of learning a

dynamics model for control, we learn a dynamics model as a source of reward. Our work is closely

related to a recently proposed auxiliary loss on predicting an agent’s own future states (Ndousse et al.,

2021). However, there are three key differences. First, their work predicts ego-agent observations,

whereas our work additionally predicts future observations from the other agents’ point of view.

Second, their loss optimizes state embeddings while ours optimizes agents’ policies. Third, their work

focuses on cooperative tasks whereas ours applies to both cooperative and competitive domains.

2.3 Multi-agent reinforcement learning algorithms

Today, the predominant training framework for deep multi-agent reinforcement learning follows

a paradigm of centralized training and decentralized execution (Lowe et al., 2017; J. Foerster et

al., 2018; Iqbal & Sha, 2019a; Liu et al., 2020; Rashid et al., 2018). This framework allows a

critic to access the observations and actions of all agents to ease training. However, there are

several situations where centralized training may not be desirable or possible. Examples include low

bandwidth communication restrictions or human-robot tasks where observations cannot be easily

shared between agents (Ying & Dayong, 2005; Cao et al., 2012; Huang, Cakmak, & Mutlu, 2015).

Decentralized training is therefore the most practical training paradigm but it suffers from unstable

training: the environment is nonstationary from a single-agent’s perspective (Lowe et al., 2017).

Our work uses a decentralized training framework and tackles the nonstationarity challenge with an

intrinsic reward designed to improve an agent’s ability to model others. We also apply alignment to

centralized training and observe that it still aids cooperative and some competitive tasks.
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Chapter 3

Methods

3.1 Background

We formulate our setting as a partially observable Markov game (S,O,A, T , rex, N) (Littman, 1994).

A Markov game for N agents is defined by a state space S describing the possible configurations

of the environment. The observation space for agents is O = (O1, . . . ,ON ) and the action space

is A = (A1, . . . ,AN ). Each agent i observes oi ∈ Oi, a private partial view of the state, and

performs actions ai ∈ Ai. Using the observation, each agent uses a stochastic policy πθi : Oi ×

Ai → [0, 1], where θi parameterizes the policy. The environment changes according to the state

transition function which transitions to the next state using the current state and each agent’s

actions, T : S × A → S. The team of agents obtains a shared extrinsic reward as a function of the

environment state, rex : S × A → R. The team’s goal is to maximize the total expected return:

R =
∑T

t=0 γ
trtex where 0 ≤ γ ≤ 1 is the discount factor, t is the time step, and T is the time horizon.

The environment may also contain adversarial agents who have their own reward structure.

8



3.2 Alignment

To understand alignment intuitively, let’s revisit the cooperative navigation task, where N agents

are rewarded for simultaneously occupying as many goal locations as possible. In Figure 1.1, agent

i has a dynamics model trained on its past experiences. It predicts how future states will evolve

from the point of view of agent j, who is within i’s view. In this example, j will expect i to

move towards the goal since i is closer to it. Alignment encourages i to pursue the action that j

expects (Figure 1.1(a)). In turn, j can now assume that the observed goal location will eventually

be occupied by i and should therefore explore to find another goal. By aligning shared expectations,

agent behaviors become more predictable. Conversely, when neighbors behave opposite to an agent’s

predictions, the agent can infer about the environment outside of its own receptive field (Krause,

Ruxton, Ruxton, Ruxton, et al., 2002). For example, in Figure 1.1 (b), if agent j observes i running

away from a goal, this surprising behavior might indicate the existence of an adversary outside j’s

receptive field.

Our training algorithm consists of three interwoven phases of learning a dynamics model, calcu-

lating the alignment reward, and training the agent policies. The following details the phrases and

is summarized in Algorithm 1.

3.3 Training the dynamics model

Similar to prior work (X. Wang, Xiong, Wang, & Wang, 2018; Kidambi, Rajeswaran, Netrapalli, &

Joachims, 2020), each agent i learns a dynamics model fθi to predict the next observation ô′i given

its current observation and action oi, ai,

ô′i = fθi(oi, ai).

9



Algorithm 1 Alignment

1: Initialize replay buffer D and D′

2: Initialize N agents with random θi: i ∈ [1, N ]
3: while not converged do
4: for b = 1 . . . B do
5: Populate buffer D with episode using policies (πθ1 , . . . , πθN )
6: end for
7: // Train dynamics model
8: for agent i = 1 . . . N do
9: Sample transitions: {(oi, ai, rex, o′i)} ∼ Di

10: Predict ô′i = fθi(oi, ai)
11: Update dynamics θi using o′i.
12: end for
13: // Calculate alignment reward
14: for agent i = 1 . . . N do
15: Sample B transitions: {(oi, ai, rex, o′i)} ∼ Di

16: Compute intrinsic rewards rin(oi, ai)
17: Add {(oi, ai, rex + βrin, o

′
i)} to D′

i

18: end for
19: // Policy learning
20: Update all θis using transitions from D′

21: end while

We use a three-layer Multi-Layer Perceptron (MLP) with ReLU non-linearities as the dynamics

model. We minimize the mean squared error between its prediction and ground truth next observa-

tion o′i.

3.4 Calculating intrinsic reward

The intrinsic reward captures how well agent i aligns to its neighbors’ (agent j’s) expectations on

its next state. Calculating this reward requires j to accurately predict i’s behavior, simulating a

Theory of Mind (Tomasello et al., 2005). As suggested by the self-organization principle, i must

learn to align to j’s predictions. Ideally, the alignment intrinsic reward is calculated as:

rin(oi, ai) = − 1

|N (i)|
∑

j∈N (i)

∥o′i − fθj (oi, ai)∥

10



where N (i) is the set of neighbors within i’s receptive field, including i itself. The alignment reward

is high when the average L2 loss is small, when i’s actual next observation is close to agent j’s

predicted observation of i for all j in its neighbors. In that case, i has chosen an action that aligns

with j’s expectations of how i should act.

In a decentralized training setup, however, i doesn’t have access to j’s dynamics model fθj , so i

approximates j’s dynamic model with a proxy: its own dynamics model fθi . Such an approximation

is ecologically valid since we often approximate others’ behaviors using a second-order cognitive

Theory of Mind (Morin, 2006). Additionally, i doesn’t have access to j’s entire observation; so, we

restrict the future prediction from j’s point of view by using the portion of j’s observation i can see:

oi∩j = oi ⊙ oj .

Agent i’s decentralized intrinsic reward then becomes:

rin(oi, ai) = − 1

|N (i)|
∑

j∈N (i)

∥o′i∩j − fθi(oi∩j , ai)∥

We found that the approximation of fθj using fθi works well emprically. Dynamics model losses for

all agents quickly decrease within 5-10 training epochs. We validate its applicability in heterogeneous

multi-agent tasks where agents have variable capabilities.

3.5 Policy learning

Once the alignment rewards are calculated, the total rewards at each step for each agent i is:

ri = rex + βrin(oi, ai) where rex is the extrinsic reward provided by the environment and β is

a hyperparameter for weighing the intrinsic reward in the agent’s overall reward calculation. In

practice, we set β to be 1
|Oi| where |Oi| is the observation dimension; we find this scale generalizes

well across tasks. Since our contribution is agnostic to any particular multi-agent training algorithm,

11



the team of agents can now be trained using any multi-agent training algorithm to maximize returns

R =
∑T

t=0 γ
tr. Both centralized and decentralized training algorithms can make use of these rewards.

In our experiments, we use the multi-agent variant of the soft-actor critic algorithm with both

decentralized as well as centralized critics (Haarnoja, Zhou, Abbeel, & Levine, 2018; Iqbal & Sha,

2019a).

3.6 Extending alignment to competitive tasks

We extend the alignment formulation to competitive tasks where a teaam of agents compete against

adversaries. In this case, agents are encouraged to misalign with their adversaries’ expectations,

agents are incentivized to be unpredictable to their adversaries:

rin =
1

|Nadv(i)|
∑

k∈Nadv(i)

∥o′i∩k − fθi(oi∩k, ai))∥

where Nadv(i) are its adversaries within its receptive field.

12



Chapter 4

Experiments

Our experiments explore the utility of using alignment as an intrinsic reward along several axes

of multi-agent algorithms: how does alignment interact with different training paradigms

(centralized vs. decentralized), reward types (sparse vs. curiosity-based intrinsic re-

wards), task dynamics (cooperative vs. competitive), observability (partial vs. full),

and number of agents in the environment?

We end by investigating how and why alignment improves coordination performance in three

evaluation conditions: how does alignment help with symmetry-breaking (Hu et al., 2020;

R. E. Wang, Wu, et al., 2020), enable zero-shot generalization to new partners, and

interact with a noisy dynamics model?

4.1 Environment

Our experiments use the multi-agent particle (Mordatch & Abbeel, 2017; Lowe et al., 2017) and

Google Research football (Kurach et al., 2019) environments for evaluation across both multi-agent

collaborative and competitive tasks.
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4.1.1 Basics

The multi-agent particle environment is a two-dimensional world with continuous space and discrete

time steps. Agents can “stay” or apply a fixed force (to increase or decrease its velocity) towards

one of the four cardinal directions: “up”, “down”, “left”, “right”. The Google Research football

environment is a three-dimensional world with continuous space and discrete time steps. Each agent

controls one player, who observes the ball and all the other players’ positions and directions. Agents

can apply one of ten actions from “top left”, “top”, “top right”, “right”, “bottom right”, “bottom”,

“bottom left”, “sprint”, and “dribble”.

4.1.2 Observability

Both environments originally assume full observability where each agent can observe the position

p = (x, y) and velocity v = (∆x,∆y) of all agents, yielding:

oi,full = [p1, . . . , pN , v1, . . . , vN ].

We extend these environments to a partially observable experimental condition, where agent i ob-

serves only the portion within its receptive field; like prior work with partial observability (Corder,

Vindiola, & Decker, 2019), we hide the position and velocity information of any agent j outside

of agent i’s receptive field; if the Euclidean distance between agent i and j surpasses a vicinity

threshold τ , then pj and vj are 0 in oi,partial. We set τ = 0.5 for partially observable and ∞ in

the original fully observable case, where the world’s width and height are 2.0 in the multi-agent

particle environment and 0.84 : 2.0 in the Google Research football environment. The multi-agent

particle environment also contains inanimate objects, some of which act as goal locations; they are

similarly represented with position and velocity. Partial observability is a more ecologically valid

training condition since most agents in real-world tasks can only observe a small portion of their

14



Figure 4.1: Illustrations of some tasks from the multi-agent particle environment: a) Predator-Prey
b) Cooperative Navigation c) Physical Deception.

environment at a given time; it also poses the additional challenge of estimating an accurate state

value from only the observations.

4.2 Tasks

4.2.1 Multi-agent particle environment

We use the following tasks from the multi-agent particle environment (Lowe et al., 2017; Liu et

al., 2020) (See Figure 4.1 for example illustrations). We choose N based on prior work. We test

scalability by doubling the number of agents and adversaries.

Cooperative navigation: N agents must cooperate to reach a set of N goal locations. Agents are

collectively rewarded based on the occupancy of any agent on any goal location.

Heterogeneous navigation: N agents must reach N goals but they differ in speeds and sizes. N
2

agents are slow and big, and the other N
2 agents are fast and small.

Keep-away: There are N landmarks, one of which is the goal location. N agents know which

landmark is the goal location. They are rewarded for occupying it and for preventing M adversaries

from occupying it. Adversaries are rewarded for pushing the agents away from the goal but they do

not know which landmark is the goal. This must be inferred from the agents’ behavior.

Physical deception: N agents must cooperate to reach a single goal location and are rewarded if any

15



one of them occupies the goal. However, N
2 adversaries are also rewarded for occupying the goal;

if this happens, the agents are penalized. Similar to keep-away, the adversaries do not know which

landmark is the goal and this information must be inferred from the agents’ behavior. The agents

must learn deceive the adversaries by covering all the landmarks.

Predator-prey: N slow adversaries chase and capture N fast cooperating agents around a randomly

generated obstacle-filled environment. Each time an adversary catches an agent, the agent is penal-

ized and the adversary is rewarded.

Symmetry-breaking initializations

We create a symmetry-breaking version of each task for evaluation by initializing the environment

in the following ways:

Cooperative Navigation and Heterogenous Navigation: All agents are initialized at the origin (i.e.

center of the world), and target landmarks are placed randomly on a circle perimeter with the

maximum radius (i.e. world radius - the greatest landmark size) so that each agent is equidistant

from each target landmark.

Physical Deception: Both agents and adversaries start at the origin. All the landmarks, including

the goal, are randomly initialized on a circle perimeter.

Predator-prey: The collaborative agents are initialized at the center while the adversaries are placed

randomly on a circle perimeter. All the landmarks are randomly initialized in the world.

Keep-away: All the cooperative agents are placed at the origin. Adversaries and landmarks, includ-

ing the goal, are randomly initialized on a circle perimeter. In this task setup, we do not initialize

the adversaries at the center because they are awarded for colliding with the cooperative agents.
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Figure 4.2: An illustration of the Academy 3 vs 1 with Keeper scenario from the Google research
football environment.

4.2.2 Google Research football

We use the Academy 3 vs 1 with Keeper task from the Google Research football environment (Kurach

et al., 2019) (See Figure 4.2 for an illustration). In this task, three of our players try to score from

the edge of the box, one on each side, and the other at the center. Initially, the player at the center

has the ball and is facing the defender. There is an opponent keeper.

4.3 Training and evaluation

We detail the training and evaluation setups in this section. All the hyperparameters used in the

training can be found in the appendix.

4.3.1 Multi-agent particle environment

We train all algorithms with 5 random state initializations. Each experiment uses one Tesla K40

GPU to train for 200 epochs or until convergence, i.e. the best evaluation episode reward hasn’t

changed for 100 epochs. Each epoch equates to 200k policy update steps, or 800k episodes of 25

timesteps.
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We evaluate the algorithms by running 1, 000 test episodes of 25 timesteps and mainly report

the mean average test episode reward and standard error across the 5 random seeds. We also

evaluate on task-specific metrics, including agent-goal occupancy/agent-adversary collision count,

and agent-goal/agent-adversary distance.

4.3.2 Google Research football

We train all algorithms on the football environment with 3 random seeds. Each experiment uses

one Tesla TITANX GPU to train for 50K iterations, or 5M timesteps. We evaluate the algorithms

on the average episode rewards across the last 100K timesteps and report the mean average episode

reward and the standard errors across the seeds.

4.4 Baselines

All algorithms are trained using the same agent architectures and optimization algorithm, but with

different task-specific extrinsic rewards. We optimize using two variations of the soft actor-critic

algorithm (Haarnoja et al., 2018): a decentralized one that trains each agent individually without

access to other agents’ observations and actions(ie. the original soft-actor critic algorithm from

haarnoja2017soft) and a centralized one with a critic that has access to other agents’ observations and

actions (Iqbal & Sha, 2019a). Centralized training is typically assumed to lead to better multi-agent

performance since the critic has access to more information when estimating the state value (Rashid

et al., 2018; Lowe et al., 2017); however, it does not scale with an increasing number of agents. Our

intrinsic reward can also be added to other optimization methods such as COMA (J. Foerster et al.,

2018) and VDN (Sunehag et al., 2017). We leave this to future work to avoid conflating the effects

of alignment as an intrinsic reward with COMA’s counterfactual and VDN’s value decomposition.

For rewards, we use sparse (Lowe et al., 2017; Kurach et al., 2019), curioself (Stadie et al.,
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2015), curioteam (Iqbal & Sha, 2020), and variations of our align rewards. Sparse awards agents

with extrinsic rewards only when they reach a goal state. Sparse refers to the scoring reward

in the Google Research football environment. curioteam is a curiosity-based multi-agent intrinsic

reward which maximizes the average L2 loss (instead of minimizing it in align) to reward agents

for exploring more novel states. curioself also maximizes the L2 loss but only using agent i’s own

observation and self-prediction. To ensure that our results are comparable between baselines, only

collaborative agents receive intrinsic rewards; adversaries are trained with SAC without alignment.

We experiment with three variants of our alignment reward: alignself only incentivizes self-

alignment (similar to the auxiliary loss in ndousse2021emergent but we treat it as an intrinsic

reward for policy optimization); alignteam encourages agents to align to their team; and alignadv

encourages misalignment to adversaries.
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Chapter 5

Results and analysis

5.1 Multi-agent particle environment

Alignment with decentralized training outperforms sparse and curiosity rewards for

cooperative tasks. Table 5.1 (top row) reports the task performance under partial observability.

Alignself/team/adv consistently improves multi-agent performance when compared against sparse

and curioself/team under partial observability. This provides empirical evidence that the self-

organizing principle improves coordination under partial information, a setting that is most realistic

to real world multiagent systems. Additionally, alignment performs better than curioself/team in-

trinsic rewards, suggesting that intrinsic rewards that align behaviors may be more useful than

curiosity-driven exploration for coordination.

Although curiosity has proven useful for exploration in single-agent tasks, we find that align-

ment—which mathematically encourages agents to be more predictable instead of finding nov-

elty—outperforms curiosity in multi-agent tasks. One example to illustrate this is the cooperative

navigation task: rather than having all agents explore and find each individual goal (incentivized by
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Table 5.1: We report the mean test episode extrinsic rewards and standard errors of decentralized
methods with different intrinsic rewards under partial and full observability. Under partial
observability, alignself/team/adv outperforms sparse and both curiosity-based intrinsic rewards
curioself,team on all tasks. Under full observability, alignteam mostly surpasses sparse and curioself

except for Keep-away (2v2) and Physical deception (2v1) respectively. These results demonstrate the
benefit of using alignment as intrinsic reward to train better decentralized policies, especially under
partial observability.

Cooperative Competitive

Task (Agt # vs. Adv #) Coop nav. (3v0) Hetero nav. (4v0) Phy decep. (2v1) Pred-prey (2v2) Keep-away (2v2)

Partial observability

sparse1 139.07± 13.63 284.42± 12.83 93.60± 8.61 −4.72± 2.4 4.58± 3.27

curio2self 133.93± 7.66 286.22± 9.97 68.80± 7.93 −6.50± 2.18 11.88± 2.88

curio3team 125.42± 11.95 262.28± 22.59 85.31± 11.93 −3.57± 1.75 9.54± 5.04

alignself 155.88± 5.11 292.34± 9.24 69.91± 4.51 −7.58± 2.55 12.84± 4.29

alignteam 141.04± 8.04 311.67± 10.88 101.72± 6.31 −7.69± 2.69 2.96± 4.03

alignadv — — 92.20± 4.23 −2.51± 1.70 19.46± 5.05

Full observability

sparse1 154.00± 10.51 274.75± 19.74 82.97± 12.23 −10.48± 4.20 4.95± 2.96

curioself 154.71± 8.00 268.85± 15.61 100.66± 15.14 −8.74± 4.62 −2.00± 1.24

alignself 161.70± 4.52 280.16± 17.12 87.50± 15.40 −5.60± 2.60 0.40± 1.92

1 (Lowe et al., 2017),2 (Stadie et al., 2015),3 (Iqbal & Sha, 2020)

curiosity-driven intrinsic rewards), a more effective multi-agent strategy is for each agent to move

to one goal and expect its teammates to explore other goals (incentivized by alignment). We hy-

pothesize that our results arise because today’s multi-agent task state space requires significantly

less exploration than those used for single-agent (e.g. Atari games).

Alignment with decentralized training outperforms sparse and curiosity rewards for

competitive tasks. In competitive tasks under partial observability, at least one of the align

variants outperforms sparse and curio. These results suggest different tasks might require different

alignment strategies. For example, in Keep-away under partial observability, the alignadv strategy

incentivizes agents to act unpredictably to adversaries; they learn to move away from the adversaries’

receptive fields and then quickly change course to reach the goal undetected by adversaries.

Decentralized alignment improves cooperative tasks under full observability. The results

for full observation are reported in Table 5.1 (bottom panel). The agents observe the entire state
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Table 5.2: We report the mean test episode extrinsic rewards and standard errors of decentralized
methods with different intrinsic rewards in scaled environments. Under partial observability, both
alignself,team outperform sparse in cooperative tasks. One of alignself,team,adv always achieves the
best performance in competitive tasks. With full observability, alignself beats sparse across all
tasks.

Cooperative Competitive

Task (Agt # vs. Adv #) Coop nav. (5v0) Hetero nav. (6v0) Phy decep. (4v2) Pred-prey (4v4) Keep-away (4v4)

Partial observability

sparse1 459.92± 22.44 616.62± 25.30 166.89± 27.72 −28.75± 7.3 0.75± 1.82

alignself 498.24± 9.77 646.70± 23.25 137.38± 30.00 −9.14± 5.57 9.83± 11.22

alignteam 488.83± 20.82 638.74± 28.93 186.83± 21.92 −20.4± 5.93 2.07± 4.55

alignadv — — 182.61± 17.63 −21.37± 7.02 11.29± 9.02

Full observability
sparse1 523.71± 34.56 533.67± 23.28 262.93± 31.88 −64.35± 8.71 −2.31± 2.45

alignself 545.35± 19.28 547.27± 18.73 285.64± 16.08 −45.02± 7.46 −2.01± 3.53

1 (Lowe et al., 2017)

Table 5.3: We report the mean test episode extrinsic rewards and standard errors of centralized
algorithms trained with different intrinsic rewards under partial observability. In cooperative tasks,
either alignself or alignteam outperforms all other intrinsic reward baselines. Among competitive
tasks, alignself,team,adv all beat the other baselines in Predator-prey (2v2) but not Physical deception
(2v2) or Keep-away (2v2), suggesting that alignment might not provide additional useful signals to
centralized algorithms in competitive settings.

Cooperative Competitive

Task (Agt # vs. Adv #) Coop nav. (3v0) Hetero nav. (4v0) Phy decep. (2v1) Pred-prey (2v2) Keep-away (2v2)

Partial observability

sparse1 113.25± 8.10 178.62± 9.62 117.45± 10.63 −1.96± 1.45 35.79± 14.93

curio2self 128.77± 7.70 190.30± 7.73 111.08± 10.09 −1.63± 1.27 13.94± 12.56

curio3team 114.13± 11.84 189.80± 11.81 114.32± 5.46 −3.04± 1.09 6.01± 3.36

alignself 137.14± 3.63 169.58± 14.99 93.27± 3.70 −0.41± 0.28 22.77± 9.91

alignteam 119.10± 10.89 210.81± 9.70 96.49± 6.46 −0.92± 0.72 24.94± 12.58

alignadv — — 102.37± 6.98 −0.13± 0.03 8.70± 4.44

1 (Lowe et al., 2017),2 (Stadie et al., 2015),3 (Iqbal & Sha, 2020)

space rather than their partial field of view, which means that alignself is equivalent to alignteam,

as all inputs to the dynamics model are the same. The results indicate that alignment is more useful

than sparse and curioself on collaborative tasks; this too suggests that being predictable is more

beneficial than being more exploratory.

Decentralized alignment doesn’t always improve competitive tasks under full observ-

ability. By contrast, we observe little to no benefit with alignment on competitive tasks. This
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Figure 5.1: Decentralized alignment achieves consistent gains compared against sparse when the
number of agents increases in the Cooperative Navigation task.

intuitively makes sense: if an agent is trained to be more predictable and the adversaries can ob-

serve the entire state space, the adversaries benefit. They can better predict where the agent will

move towards and outsmart it.

Alignment scales to more agents. Our experiments demonstrate consistent gains from decen-

tralized alignment compared against sparse when the number of agents increases (Figure 5.1). This

is true across all cooperative and competitive tasks, showing that our decentralized alignment scales

well, mitigating the limitations of centralized training when the number of agents increases (Liu et

al., 2020).

Alignment doesn’t always improve centralized training. In Table 5.3, we observe that

alignself’s and alignteam’s performance is higher for both cooperative tasks but for only one of the

competitive tasks: Predator-prey. We hypothesize these results arise because centralized training,

with access to all agents’ states and actions, can incentivize an agent for actions that are counter to
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Coop navigation (5v0) Predator-prey (4v4) Keep-away (4v4)

Agent

Adversary

Landmark 

Goal 

Figure 5.2: We visualize the symmetry-breaking setups in three example tasks. In Coop navigation
(5v0), 5 agents are initialized at the center and equidistant to the 5 goals. In Predator-prey (4v4),
4 agents are initialized in the middle and equidistant to the 4 adversaries; the landmarks are placed
randomly. In Keep-away, 4 agents are placed at the center, and the same distance from all 4
adversaries and 4 landmarks, where one of them is the goal.
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Figure 5.3: We plot the average test occupancy/collision count per step of decentralized algorithms
in symmetry-breaking settings under partial observability. We find that our align intrinsic reward
consistently beats the sparse baseline in cooperative tasks with symmetry-breaking initializations.
In competitive tasks, one but not all of our align variants always surpasses sparse, suggesting the
need for different alignment strategies when adversaries play different roles in different tasks.

alignment’s local context.

5.1.1 Investigating how alignment reward helps

We further investigate how alignment improves multi-agent training through three additional eval-

uation setups.
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Figure 5.4: We sample agents from different decentralized training runs and evaluate their zero-shot
performance under partial observability. We report the average test occupancy/collision count per
step. We find that alignself,team both outperform sparse in Heterogenous navigation (6v0), and
that alignself,team,adv all improve on Predator-prey (4v4). In Cooperative navigation (5v0), Physical
deception (4v2), and Keep-away (4v4), one of alignself,team,adv achieves the best performance.

Alignment helps agents divide sub-tasks. A core challenge in multi-agent collaboration is

efficient task division wang2020cooks. Here, we test whether alignment improves sub-task alloca-

tion; we initialize agents in states without an optimal sub-task allocation, necessitating symmetry-

breaking (Hu et al., 2020). Figure 5.2 illustrates symmetry-breaking setups: In cooperative naviga-

tion, when agents are initialized equidistant to all the goal locations, there isn’t an optimal allocation

of agents to goals.

We find that both alignself and alignteam achieve better performance than sparse on collab-

oration tasks, and at least one align variant surparsses sparse on competitive ones ( Figure 5.3).

Upon a qualitative evaluation of cooperative navigation, we observe that, with alignment, agents are

able to predict which goals will be covered by their collaborators and move towards their allocated

one. Without alignment, agents often move towards the same goal.

Alignment helps agents generalize to new partners. Another core challenge of multi-agent

training algorithms is disjoint training, where agents are tested to collaborate with new partners they

haven’t been trained with. Disjoint training holds the promise of enabling multi-agent collaboration

with humans partners. We study whether alignment enables better zero-shot coordination. New

partners are sampled from other training runs with different seeds and the team is evaluated using

the same metrics as before. We conduct this investigation on decentralized agents under partial

25



Figure 5.5: Test performance decreases with dynamics model loss (R2 = 0.242), implying that
alignment requires an accurate dynamics model.

observability and report results in Figure 5.4. We observe that all align strategies enable better

performance than sparse when evaluated with new agents in Heterogenous navigation and Predator-

prey, and at least one of alignself,team,adv performs the best in the other tasks. These results suggest

that alignment results in better zero-shot coordination with new partners sampled from separate

training runs.

Accuracy of the dynamics model affects alignment. Third, we investigate the role of the

dynamics model in calculating the intrinsic rewards. Since alignment uses a dynamics model to

calculate rewards, we test whether an inaccurate model misleads agents towards unaligned behaviors.

We trained agents on noisy dynamics models by adding Gaussian noise ϵ ∼ N (0, σ). We picked

σ ∈ [0.5, 1.0, 2.0] and ran experiments on one cooperative and one competitive task. Figure 5.5 plots

the final dynamics loss against the reward change from the noiseless run with 8 data points (4 from

each task). As the dynamics model degrades, we observe that the task performance also drops. This

study identifies the importance of an accurate dynamics model, suggesting that alignment should

only be used in environments where an accurate dynamics model can be learned.
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Table 5.4: We report the mean average episode rewards and standard errors of the algorithms in
the Academy 3vs1 with keeper task.

Method Mean avg. episode reward

sparse1 0.020± 0.004

alignteam 0.026± 0.001

alignadv 0.023± 0.001

1 (Kurach et al., 2019)

5.2 Google Research football

The experiments on Google Research football are still going on. Preliminary results in Table 5.4

show that alignteam with the soft actor-critic algorithm achieves a higher mean average episode

reward than sparse. This suggests that alignment is helpful even in the Google Research football

environment, which has a more complex action space. My next step is to collect and analyze the

results of the other align variants and all the curio baselines.
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Chapter 6

Limitations and future directions

Our results indicate that alignment is a more useful strategy than curiosity across collaborative and

competitive multi-agent tasks, and that aligned agents generalize better to new partners. However,

these findings are limited to the multi-agent particle environment and the simpler tasks in the

Google Research football environment, which have a smaller action space than most ecologically valid

scenarios. Language, motion, and human gesture are all combinatorially vast; in such action spaces,

alignment might develop social dynamics that hinder non-optimal multi-agent behaviors. Similarly,

photorealistic environments have a larger state space, where teams perform common household

activities or drive together in crowded cities (Srivastava et al., 2021). To better understand the

utility of alignment versus curiosity, future work should develop new multi-agent environments that

demand exploration complexity and where both curiosity and alignment would be necessary for

collaboration. For example, in a search and rescue task where a single agent is unable to carry the

injured, curiosity would encourage “search” while alignment would speed up “rescue”.

Enabling multi-agent training without centralized training could open up future opportunities to

train and evaluate multi-agent algorithms in existing human environments. Agents with interpretable
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actions can induce more faithful human mental models, improving human-AI interaction; however,

predictability does not imply legibility (Dragan, Lee, & Srinivasa, 2013). Future work could explore

the role of legibility in designing intrinsic rewards.

Alignment, generating predictable and consistent behaviors, can be viewed as a self-supervised

loss similar to the ones recently used in computer vision (Chen, Kornblith, Norouzi, & Hinton, 2020).

Future work could study the role of self-supervised multi-agent objectives, which might similarly lead

to emergent visual, linguistic, and social features.
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Chapter 7

Conclusion

In this thesis, I introduce alignment, a simple, task-agnostic intrinsic reward for multi-agent sys-

tems inspired from the self-organizing principle in Zoology (Chapters 1 and 2). My formulation of

alignment rewards agents when they act predictably to their teammates and unpredictably to their

adversaries (Chapter 3). Through extensive experiments in the multi-agent particle and Google Re-

search football environments (Chapter 4), I found that decentralized alignment improves multi-agent

performance across cooperative and competitive tasks, partial and full observability, and different

team sizes (Chapter 5).

I also sought to understand why and how alignment helps across various multi-agent tasks with

additional experiments. The results show that alignment helps agents break symmetries in col-

laborative tasks, thus enabling more effective coordination. Further, the zero-shot experiments

demonstrate that alignment also helps agents generalize to new partners. Although these findings

are limited to the simple multi-agent environment, they are exciting to me and motivate me to keep

exploring alignment-driven strategies for multi-agent coordination.

While I have reached the end of this thesis and submitted it to the 39th International
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Conference on Machine Learning (ICML 2022), it is only the start of my research

journey. I believe effective strategies for multi-agent coordination are a stepping stone

for Human-AI collaboration - where my heart belongs. I am beyond grateful and

hopeful to bring this research experience with me and begin my deeper exploration on

ways to improve on Human-AI collaboration in the near future.
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Appendix A

Appendix

A.1 Emergent behavior visualization

We upload video examples of agents’ emergent behaviors in both cooperative and competitive tasks

to a Google drive accessible via this link: https://drive.google.com/drive/folders/1gJvcO

-6HXvl vS43ZfMA1RbYcbwubQXM?usp=sharing.

A.2 Hyperparameters

Table A.1 presents the hyperparameters used to train the algorithms in the multi-agent particle

environment.

A.3 Additional results

We include 18 tables of additional results that quantify the agents’ performance beyond extrinsic

reward.
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Table A.1: Model and training hyperparameters

Parameter Value

SAC actor model architecture FC layers [128,128]
SAC critic model architecture FC layers [128,128]
World model architecture FC layers [128,128]
Replay buffer size 1,000,000
Batch size 1,024
Actor learning rate 0.001
Critic learning rate 0.001
Discount factor gamma 0.95
SAC soft update coefficient 0.01
SAC policy entropy regularization coefficient 0.1

Table A.2 and A.3 report two sets of metrics of decentralized methods trained with different

intrinsic rewards in both partially and fully observable settings. Table A.2 reports the average

number of agent-target occupancies per step (or, we can understand it as: on average, the total

number of goals occupied by the agents at any given timestep throughout an episode) and agent-

adversary collisions in Predator-prey. Higher scores are better for the occupancy metric, and lower

scores are better for collision. Table A.3 reports the average minimum agent-to-target distance

and agent-to-adversary distance. Agent-to-target distances measure the closest distance an agent

achieves to the target location; lower scores are better on this metric. Agent-to-adversary distances

measure the closest distance an adversary gets to a good agent; higher scores are better on this metric.

Note that these distance-based metrics are not included in the reward functions, and should mainly

be used to make comparisons in the case where primary metrics (reward and occupancy/collision

count) have the same values.

Table A.4 and A.5 report the same metrics as A.2 and A.3 respectively, but in scaled environments

with more agents.

Table A.6 reports the test mean episode rewards of centralized algorithms with different in-

trinsic rewards under full observability. Table A.7 and A.8 show the other two sets of metrics

(occupancy/collision count and agent-target/agent-adversary distance) of centralized algorithms.
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Table A.2: The average test occupancy/collision count per step and standard errors of decentralized
methods with different intrinsic rewards under partial and full observability. Higher scores are better
for the occupancy metric (↑), and lower scores are better for the collision metric (↓).

Cooperative Competitive

Task (Agt # vs. Adv #) Coop nav. (3v0) ↑ Hetero nav. (4v0) ↑ Phy decep. (2v1) ↑ Pred-prey (2v2) ↓ Keep-away (2v2) ↑

Partial observability

sparse 0.46± 0.05 0.57± 0.01 0.98± 0.07 0.02± 0.01 0.07± 0.02

curioself 0.43± 0.03 0.60± 0.01 0.99± 0.03 0.02± 0.01 0.14± 0.02

curioteam 0.42± 0.05 0.59± 0.01 0.95± 0.01 0.02± 0.01 0.10± 0.03

alignself 0.52± 0.03 0.61± 0.01 0.95± 0.02 0.03± 0.01 0.10± 0.02

alignteam 0.44± 0.04 0.58± 0.02 0.99± 0.07 0.03± 0.01 0.07± 0.02

alignadv — — 1.00± 0.06 0.01± 0.01 0.15± 0.03

Full observability

sparse 0.46± 0.11 0.57± 0.01 0.88± 0.09 0.03± 0.01 0.06± 0.02

curioself 0.50± 0.07 0.59± 0.02 1.09± 0.13 0.03± 0.01 0.02± 0.00

alignself 0.48± 0.11 0.58± 0.02 0.83± 0.10 0.02± 0.01 0.04± 0.01

Table A.9, A.10, and A.11 contain the same metrics as A.6, A.7 and A.8 respectively, but in scaled

environments.

Tables A.12, A.13 and A.14 report the test episode reward and additional metrics of decentralized

algorithms in the symmetry-breaking experiments conducted under “Investigating how alignment

reward helps”. Table A.15, A.16 and A.17 report the same set of metrics but from experiments

conducted in scaled and symmetry-breaking environments.

Finally, Tables A.18 and A.19 report the test episode reward values and secondary distance-based

metrics for the zero-shot generalization experiments conducted under “Investigating how alignment

reward helps”. These experiments measure how well agents trained on different seeds generalized to

new partners trained on other seeds.
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Table A.3: The average test agent-to-target (agt-target) and agent-to-adversary (agt-adv) distances
and standard errors of decentralized methods with different intrinsic rewards under partial and full
observability. Lower scores are better for agt-target (↓), and higher scores are better for agt-adv (↑).

Cooperative Competitive

Task (Agt # vs. Adv #) Coop nav. (3v0) ↓ Hetero nav. (4v0) ↓ Phy decep. (2v1) ↓ Pred-prey (2v2) ↑ Keep-away (2v2) ↓

Partial observability

sparse 0.30± 0.02 0.23± 0.00 0.26± 0.01 1.45± 0.11 1.41± 0.07

curioself 0.32± 0.02 0.25± 0.01 0.25± 0.00 1.36± 0.06 1.14± 0.09

curioteam 0.31± 0.01 0.25± 0.01 0.26± 0.00 1.48± 0.13 1.31± 0.10

alignself 0.33± 0.03 0.25± 0.01 0.26± 0.00 1.39± 0.12 1.26± 0.09

alignteam 0.33± 0.02 0.23± 0.01 0.25± 0.01 1.38± 0.13 1.38± 0.09

alignadv — — 0.25± 0.01 1.54± 0.08 1.14± 0.09

Full observability

sparse 0.32± 0.09 0.23± 0.00 0.26± 0.01 1.23± 0.12 1.27± 0.09

curioself 0.28± 0.04 0.22± 0.01 0.23± 0.01 1.37± 0.15 1.53± 0.03

alignself 0.30± 0.07 0.23± 0.01 0.27± 0.01 1.40± 0.13 1.41± 0.10

Table A.4: The average test occupancy/collision count per step and standard errors of decentralized
methods with different intrinsic rewards in scaled environments under partial and full observability.
Higher scores are better for the occupancy metric (↑), and lower scores are better for the collision
metric (↓).

Cooperative Competitive

Task (Agt # vs. Adv #) Coop nav. (5v0) ↑ Hetero nav. (6v0) ↑ Phy decep. (4v2) ↑ Pred-prey (4v4) ↓ Keep-away (4v4) ↑

Partial observability

sparse 0.50± 0.04 0.46± 0.08 1.20± 0.10 0.11± 0.02 0.08± 0.02

alignself 0.49± 0.03 0.55± 0.11 1.30± 0.23 0.04± 0.02 0.14± 0.08

alignteam 0.56± 0.04 0.56± 0.00 1.21± 0.09 0.08± 0.02 0.10± 0.02

alignadv — — 1.23± 0.10 0.08± 0.02 0.16± 0.07

Full observability
sparse 0.52± 0.11 0.46± 0.08 0.99± 0.09 0.21± 0.01 0.03± 0.00

alignself 0.55± 0.11 0.56± 0.00 1.04± 0.07 0.15± 0.03 0.06± 0.02

Table A.5: The average test agent-to-target (agt-target) and agent-to-adversary (agt-adv) distances
and standard errors of decentralized methods with different intrinsic rewards in scaled environments
under partial and full observability. Lower scores are better for agt-target (↓), and higher scores are
better for agt-adv (↑).

Cooperative Competitive

Task (Agt # vs. Adv #) Coop nav. (5v0) ↓ Hetero nav. (6v0) ↓ Phy decep. (4v2) ↓ Pred-prey (4v4) ↑ Keep-away (4v4) ↓

Partial observability

sparse 0.22± 0.01 0.27± 0.05 0.23± 0.02 2.03± 0.15 2.97± 0.17

alignself 0.29± 0.03 0.19± 0.00 0.24± 0.02 2.39± 0.11 2.97± 0.30

alignteam 0.23± 0.04 0.21± 0.00 0.23± 0.01 2.16± 0.12 2.88± 0.19

alignadv — — 0.22± 0.01 2.12± 0.16 2.66± 0.23

Full observability
sparse 0.23± 0.06 0.27± 0.05 0.21± 0.02 1.64± 0.02 3.28± 0.02

alignself 0.20± 0.04 0.21± 0.00 0.21± 0.01 1.82± 0.10 2.97± 0.17
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Table A.6: We report the mean test episode extrinsic rewards and standard errors of centralized
methods with different intrinsic rewards under full observability.

Cooperative Competitive

Task (Agt # vs. Adv #) Coop nav. (3v0) Hetero nav. (4v0) Phy decep. (2v1) Pred-prey (2v2) Keep-away (2v2)

Full observability

sparse 106.02± 20.95 123.17± 18.77 130.90± 6.59 −1.90± 1.61 12.49± 9.83

curioself 86.52± 16.02 108.84± 6.89 107.84± 13.67 −1.69± 0.60 23.70± 12.95

alignself 120.47± 12.26 134.30± 5.84 105.74± 9.72 −2.37± 1.39 22.92± 7.00

Table A.7: The average test occupancy/collision count per step and standard errors of centralized
methods with different intrinsic rewards under partial and full observability. Higher scores are better
for the occupancy metric (↑), and lower scores are better for the collision metric (↓).

Cooperative Competitive

Task (Agt # vs. Adv #) Coop nav. (3v0) ↑ Hetero nav. (4v0) ↑ Phy decep. (2v1) ↑ Pred-prey (2v2) ↓ Keep-away (2v2) ↑

Partial observability

sparse 0.29± 0.10 0.50± 0.03 0.94± 0.06 0.00± 0.00 0.36± 0.12

curioself 0.28± 0.09 0.47± 0.03 0.94± 0.03 0.01± 0.00 0.17± 0.10

curioteam 0.33± 0.10 0.47± 0.04 0.92± 0.01 0.01± 0.00 0.08± 0.03

alignself 0.21± 0.10 0.50± 0.01 0.92± 0.02 0.00± 0.00 0.25± 0.08

alignteam 0.23± 0.09 0.55± 0.02 0.90± 0.07 0.01± 0.00 0.24± 0.11

alignadv — — 0.94± 0.04 0.00± 0.00 0.10± 0.05

Full observability

sparse 0.34± 0.10 0.33± 0.07 0.88± 0.04 0.01± 0.00 0.26± 0.11

curioself 0.30± 0.07 0.32± 0.05 0.82± 0.02 0.01± 0.01 0.33± 0.16

alignself 0.30± 0.11 0.40± 0.04 0.88± 0.05 0.01± 0.01 0.30± 0.07

Table A.8: The average test agent-to-target (agt-target) and agent-to-adversary (agt-adv) distances
and standard errors of centralized methods with different intrinsic rewards under partial and full
observability. Lower scores are better for agt-target (↓), and higher scores are better for agt-adv (↑).

Cooperative Competitive

Task (Agt # vs. Adv #) Coop nav. (3v0) ↓ Hetero nav. (4v0) ↓ Phy decep. (2v1) ↓ Pred-prey (2v2) ↑ Keep-away (2v2) ↓

Partial observability

sparse 0.42± 0.05 0.29± 0.02 0.27± 0.01 1.54± 0.02 1.38± 0.13

curioself 0.42± 0.05 0.29± 0.01 0.27± 0.01 1.46± 0.05 1.40± 0.13

curioteam 0.41± 0.06 0.29± 0.02 0.28± 0.01 1.49± 0.04 1.43± 0.14

alignself 0.50± 0.07 0.29± 0.01 0.27± 0.01 1.60± 0.04 1.26± 0.12

alignteam 0.45± 0.05 0.27± 0.01 0.28± 0.01 1.52± 0.04 1.35± 0.14

alignadv — — 0.28± 0.01 1.55± 0.03 1.45± 0.10

Full observability

sparse 0.38± 0.07 0.34± 0.04 0.25± 0.00 1.59± 0.06 1.43± 0.09

curioself 0.36± 0.05 0.32± 0.02 0.25± 0.01 1.53± 0.09 1.08± 0.15

alignself 0.43± 0.08 0.30± 0.02 0.25± 0.00 1.51± 0.08 1.18± 0.15

36



Table A.9: We report the mean test episode extrinsic rewards and standard errors of centralized
methods with different intrinsic rewards in scaled environments.

Cooperative Competitive

Task (Agt # vs. Adv #) Coop nav. (5v0) Hetero nav. (6v0) Phy decep. (4v2) Pred-prey (4v4) Keep-away (4v4)

Partial observability

sparse 100.63± 19.36 346.16± 18.95 −38.99± 16.18 −17.33± 4.29 −2.50± 2.64

alignself 112.15± 19.69 375.21± 26.10 13.71± 29.53 −20.12± 1.42 −4.68± 1.21

alignteam 97.93± 25.23 372.41± 44.28 60.07± 13.26 −27.87± 0.99 1.72± 3.79

alignadv — — 21.67± 48.17 −17.68± 5.59 −4.92± 1.81

Full observability
sparse 50.60± 13.10 153.76± 19.81 97.32± 17.95 −38.25± 5.06 −3.39± 2.77

alignself 186.55± 53.15 127.97± 13.02 103.46± 28.91 −23.29± 5.00 −4.90± 0.67

Table A.10: The average test occupancy/collision count per step and standard errors of centralized
methods with different intrinsic rewards in scaled environments under partial and full observability.
Higher scores are better for the occupancy metric (↑), and lower scores are better for the collision
metric (↓).

Cooperative Competitive

Task (Agt # vs. Adv #) Coop nav. (5v0) ↑ Hetero nav. (6v0) ↑ Phy decep. (4v2) ↑ Pred-prey (4v4) ↓ Keep-away (4v4) ↑

Partial observability

sparse 0.11± 0.02 0.29± 0.06 0.56± 0.05 0.06± 0.02 0.07± 0.02

alignself 0.23± 0.09 0.33± 0.04 0.56± 0.06 0.08± 0.00 0.05± 0.00

alignteam 0.27± 0.10 0.33± 0.05 0.50± 0.08 0.09± 0.00 0.09± 0.03

alignadv — — 0.60± 0.09 0.05± 0.02 0.05± 0.01

Full observability
sparse 0.10± 0.04 0.16± 0.04 0.50± 0.03 0.12± 0.01 0.06± 0.01

alignself 0.16± 0.09 0.11± 0.00 0.55± 0.02 0.10± 0.02 0.04± 0.01

Table A.11: The average test agent-to-target (agt-target) and agent-to-adversary (agt-adv) dis-
tances and standard errors of centralized methods with different intrinsic rewards in scaled environ-
ments under partial and full observability. Lower scores are better for agt-target (↓), and higher
scores are better for agt-adv (↑).

Cooperative Competitive

Task (Agt # vs. Adv #) Coop nav. (5v0) ↓ Hetero nav. (6v0) ↓ Phy decep. (4v2) ↓ Pred-prey (4v4) ↑ Keep-away (4v4) ↓

Partial observability

sparse 0.33± 0.01 0.29± 0.02 0.34± 0.02 2.27± 0.08 3.12± 0.18

alignself 0.32± 0.04 0.28± 0.01 0.36± 0.02 2.32± 0.09 3.25± 0.05

alignteam 0.30± 0.04 0.28± 0.01 0.37± 0.03 2.29± 0.08 3.01± 0.20

alignadv — — 0.33± 0.04 2.44± 0.08 3.23± 0.13

Full observability
sparse 0.37± 0.03 0.37± 0.02 0.29± 0.02 1.98± 0.07 3.13± 0.17

alignself 0.36± 0.04 0.39± 0.00 0.27± 0.01 1.98± 0.08 3.25± 0.12
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Table A.12: We report the mean test episode extrinsic rewards and standard errors of decentralized
methods with different intrinsic rewards in symmetry-breaking settings under partial and full ob-
servability.

Cooperative Competitive

Task (Agt # vs. Adv #) Coop nav. (3v0) Hetero nav. (4v0) Phy decep. (2v1) Pred-prey (2v2) Keep-away (2v2)

Partial observability

sparse 97.45± 10.49 184.18± 7.63 59.39± 21.10 −1.89± 1.69 3.85± 4.25

curioself 85.23± 10.88 184.07± 9.99 54.17± 27.40 −2.86± 1.19 19.57± 4.92

curioteam 81.50± 15.78 141.78± 20.04 41.12± 13.37 −2.80± 1.91 10.21± 6.34

alignself 110.29± 9.67 176.98± 6.38 98.90± 17.71 −4.00± 2.14 9.47± 3.99

alignteam 92.41± 10.70 187.42± 11.29 74.06± 21.58 −2.00± 1.39 3.32± 3.04

alignadv — — 87.55± 15.35 −1.40± 1.25 13.77± 3.58

Full observability

sparse 150.42± 15.18 250.41± 14.23 69.06± 14.06 −7.62± 3.50 3.50± 4.00

curioself 149.48± 9.42 241.69± 19.58 52.69± 17.97 −10.40± 6.33 −1.10± 0.59

alignself 152.08± 6.68 275.69± 7.49 75.79± 24.54 −4.44± 2.05 0.96± 3.14

Table A.13: The average test occupancy/collision count per step and standard errors of decentralized
methods with different intrinsic rewards in symmetry-breaking settings under partial and full ob-
servability. Higher scores are better for the occupancy metric (↑), and lower scores are better for
the collision metric (↓).

Cooperative Competitive

Task (Agt # vs. Adv #) Coop nav. (3v0) ↑ Hetero nav. (4v0) ↑ Phy decep. (2v1) ↑ Pred-prey (2v2) ↓ Keep-away (2v2) ↑

Partial observability

sparse 0.26± 0.04 0.27± 0.02 0.67± 0.09 0.02± 0.01 0.04± 0.03

curioself 0.22± 0.01 0.28± 0.04 0.61± 0.06 0.02± 0.01 0.15± 0.04

curioteam 0.26± 0.06 0.29± 0.02 0.65± 0.05 0.01± 0.01 0.08± 0.04

alignself 0.29± 0.05 0.32± 0.03 0.62± 0.02 0.02± 0.01 0.08± 0.03

alignteam 0.27± 0.04 0.27± 0.02 0.72± 0.10 0.02± 0.01 0.05± 0.04

alignadv — — 0.68± 0.07 0.00± 0.00 0.14± 0.04

Full observability

sparse 0.45± 0.12 0.54± 0.01 0.89± 0.11 0.03± 0.01 0.05± 0.02

curioself 0.48± 0.08 0.54± 0.01 1.13± 0.14 0.04± 0.02 0.00± 0.00

alignself 0.46± 0.11 0.54± 0.01 0.86± 0.12 0.02± 0.01 0.02± 0.02

Table A.14: The average test agent-to-target (agt-target) and agent-to-adversary (agt-adv) dis-
tances and standard errors of decentralized methods with different intrinsic rewards in symmetry-
breaking settings under partial and full observability. Lower scores are better for agt-target (↓), and
higher scores are better for agt-adv (↑).

Cooperative Competitive

Task (Agt # vs. Adv #) Coop nav. (3v0) ↓ Hetero nav. (4v0) ↓ Phy decep. (2v1) ↓ Pred-prey (2v2) ↑ Keep-away (2v2) ↓

Partial observability

sparse 0.53± 0.02 0.57± 0.02 0.35± 0.03 1.49± 0.14 1.57± 0.15

curioself 0.57± 0.04 0.55± 0.04 0.37± 0.02 1.29± 0.06 1.07± 0.17

curioteam 0.53± 0.03 0.55± 0.03 0.35± 0.02 1.49± 0.13 1.37± 0.18

alignself 0.68± 0.05 0.52± 0.03 0.34± 0.01 1.39± 0.13 1.26± 0.18

alignteam 0.55± 0.05 0.56± 0.02 0.31± 0.02 1.41± 0.10 1.53± 0.17

alignadv — — 0.33± 0.04 1.61± 0.08 1.08± 0.15

Full observability

sparse 0.45± 0.12 0.29± 0.00 0.25± 0.01 1.28± 0.15 1.30± 0.15

curioself 0.33± 0.06 0.30± 0.01 0.22± 0.01 1.47± 0.17 1.71± 0.05

alignself 0.46± 0.11 0.30± 0.00 0.25± 0.02 1.49± 0.16 1.53± 0.16
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Table A.15: We report the mean test episode extrinsic rewards and standard errors of decentralized
methods with different intrinsic rewards in scaled and symmetry-breaking settings.

Cooperative Competitive

Task (Agt # vs. Adv #) Coop nav. (5v0) Hetero nav. (6v0) Phy decep. (4v2) Pred-prey (4v4) Keep-away (4v4)

Partial observability

sparse 328.24± 24.17 405.08± 21.53 172.87± 32.43 −35.40± 8.63 1.37± 3.48

alignself 328.24± 24.17 412.39± 12.63 129.07± 51.08 −7.34± 5.12 11.97± 13.30

alignteam 354.14± 19.53 417.94± 22.29 184.21± 23.16 −19.37± 6.44 4.05± 5.78

alignadv — — 148.69± 31.79 −23.42± 8.32 18.71± 14.78

Full observability
sparse 466.17± 28.16 471.19± 16.23 233.61± 25.44 −39.24± 6.63 −5.10± 0.26

alignself 520.25± 9.68 510.18± 25.71 222.31± 15.39 −30.56± 9.87 −4.27± 2.53

Table A.16: The average test occupancy/collision count per step and standard errors of decentralized
methods with different intrinsic rewards in scaled and symmetry-breaking settings. under partial and
full observability. Higher scores are better for the occupancy metric (↑), and lower scores are better
for the collision metric (↓).

Cooperative Competitive

Task (Agt # vs. Adv #) Coop nav. (5v0) ↑ Hetero nav. (6v0) ↑ Phy decep. (4v2) ↑ Pred-prey (4v4) ↓ Keep-away (4v4) ↑

Partial observability

sparse 0.37± 0.05 0.38± 0.03 0.75± 0.04 0.13± 0.03 0.04± 0.02

alignself 0.37± 0.05 0.39± 0.02 0.96± 0.20 0.04± 0.03 0.11± 0.10

alignteam 0.37± 0.03 0.40± 0.03 0.72± 0.03 0.07± 0.03 0.06± 0.03

alignadv — — 0.63± 0.09 0.07± 0.03 0.15± 0.10

Full observability
sparse 0.52± 0.11 0.43± 0.09 0.86± 0.07 0.19± 0.02 0.00± 0.00

alignself 0.55± 0.11 0.55± 0.00 0.94± 0.08 0.12± 0.03 0.02± 0.01

Table A.17: The average test agent-to-target (agt-target) and agent-to-adversary (agt-adv) dis-
tances and standard errors of decentralized methods with different intrinsic rewards in scaled and
symmetry-breaking settings under partial and full observability. Lower scores are better for agt-
target (↓), and higher scores are better for agt-adv (↑).

Cooperative Competitive

Task (Agt # vs. Adv #) Coop nav. (5v0) ↓ Hetero nav. (6v0) ↓ Phy decep. (4v2) ↓ Pred-prey (4v4) ↑ Keep-away (4v4) ↓

Partial observability

sparse 0.36± 0.01 0.42± 0.02 0.35± 0.01 2.04± 0.18 3.10± 0.29

alignself 0.36± 0.01 0.41± 0.02 0.37± 0.04 2.52± 0.15 3.22± 0.42

alignteam 0.42± 0.03 0.41± 0.02 0.37± 0.01 2.25± 0.15 3.00± 0.33

alignadv — — 0.41± 0.05 2.27± 0.16 2.62± 0.30

Full observability
sparse 0.29± 0.07 0.37± 0.06 0.26± 0.01 1.81± 0.04 3.69± 0.05

alignself 0.26± 0.05 0.29± 0.00 0.27± 0.01 2.10± 0.12 3.24± 0.26
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Table A.18: We sample agents from different decentralized training runs and evaluate their zero-shot
performance in scaled environments under partial observability. We report the mean test episode
extrinsic rewards and standard errors of decentralized methods with different intrinsic rewards.

Cooperative Competitive

Task (Agt # vs. Adv #) Coop nav. (5v0) Hetero nav. (6v0) Phy decep. (4v2) Pred-prey (4v4) Keep-away (4v4)

Partial observability

sparse 434.68± 6.42 561.16± 31.63 128.64± 17.31 −32.12± 3.63 −2.80± 2.91

alignself 471.07± 5.00 676.01± 16.53 248.16± 6.62 −16.77± 2.25 −5.03± 1.06

alignteam 511.97± 6.95 699.56± 11.64 190.06± 29.10 −19.40± 2.86 −3.10± 3.09

alignadv — — 228.53± 25.03 −31.03± 3.13 27.24± 4.48

Table A.19: We sample agents from different decentralized training runs and evaluate their zero-shot
performance in scaled environments under partial observability. We report the average test agent-to-
target (agt-target) and agent-to-adversary (agt-adv) distances and standard errors of decentralized
methods with different intrinsic rewards. Lower scores are better for agt-target (↓), and higher scores
are better for agt-adv (↑).

Cooperative Competitive

Task (Agt # vs. Adv #) Coop nav. (5v0) ↓ Hetero nav. (6v0) ↓ Phy decep. (4v2) ↓ Pred-prey (4v4) ↑ Keep-away (4v4) ↓

Partial observability

sparse 0.22± 0.00 0.23± 0.00 0.23± 0.00 1.93± 0.00 3.16± 0.01

alignself 0.19± 0.00 0.20± 0.00 0.17± 0.00 2.33± 0.00 3.31± 0.01

alignteam 0.43± 0.01 0.19± 0.00 0.24± 0.00 2.04± 0.01 3.15± 0.01

alignadv — — 0.21± 0.00 2.11± 0.01 2.31± 0.01
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